PROBABILITY FACTS CHEAT SHEET

Fact. (Basic Counting Principle) Suppose 2 experiments are to be performed.
If one experiement can result in m possibilities
Second experiment can result in n possibilities
Then together there are mn possibilities
Fact. If $r \leq n$, then

$$
\binom{n}{r}=\frac{n!}{(n-r)!r!}
$$

and say n choose r, represents the number of possible combinations of objects taken r at a time.
(\star) Order DOES NOT Matter her

- With n objects. There are

$$
n(n-1) \cdots 3 \cdot 2 \cdot 1=n!
$$

different permutations of the n objects.

- Binomial Theorem: $(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}$
- Probability will be a rule given by the following Axioms (Laws that we all agree on)
- Let S be a sample space.
- A probability will be a function $\mathbb{P}(E)$ where the input is a set/event $E \subset S$ such that
- Axiom 1: $0 \leq \mathbb{P}(E) \leq 1$ for all events E.
- Axiom 2: $\mathbb{P}(S)=1$.
- Axiom 3: (disjoint property) If the events E_{1}, E_{2}, \ldots are pairwise disjoint/mutually exclusive then

$$
\mathbb{P}\left(\bigcup_{i=1}^{\infty} E_{i}\right)=\sum_{i=1}^{\infty} \mathbb{P}\left(E_{i}\right)
$$

* Mutually exclusive means that $E_{i} \cap E_{j}=\emptyset$ when $i \neq j$.

Proposition 1. (a) $\mathbb{P}(\emptyset)=0$
(b) If A_{1}, \ldots, A_{n} are pairwise disjoint, $\mathbb{P}\left(\cup_{i=1}^{n} A_{i}\right)=\sum_{i=1}^{n} \mathbb{P}\left(A_{i}\right)$.
(c) $\mathbb{P}\left(E^{c}\right)=1-\mathbb{P}(E)$.
(d) If $E \subset F$, then $\mathbb{P}(E) \leq \mathbb{P}(F)$.
(e) $\mathbb{P}(E \cup F)=\mathbb{P}(E)+\mathbb{P}(F)-\mathbb{P}(E \cap F)$.

- We say E and F are independent events if

$$
\mathbb{P}(E \cap F)=\mathbb{P}(E) \mathbb{P}(F)
$$

- $\mathbb{P}(E \mid F)=\frac{\mathbb{P}(E \cap F)}{\mathbb{P}(F)}$ and $\mathbb{P}(A \cap B)=\mathbb{P}(A) \mathbb{P}(B \mid A)$
- The Law of Total Probability: If F_{1}, \ldots, F_{n} are mutually exclusive events such that they make up everythinn $S=\bigcup_{i=1}^{n} F_{i}$ then

$$
\mathbb{P}(E)=\sum_{i=1}^{n} \mathbb{P}\left(E \mid F_{i}\right) \mathbb{P}\left(F_{i}\right)
$$

- Bayes' formula: If $S=\bigcup_{i=1}^{n} F_{i}$, for any any j,

$$
\mathbb{P}\left(F_{j} \mid E\right)=\frac{\mathbb{P}\left(E \mid F_{j}\right) \mathbb{P}\left(F_{j}\right)}{\sum_{\substack{i=1 \\ 1}}^{n}\left(E \mid F_{i}\right) \mathbb{P}\left(F_{i}\right)}
$$

- When $n=2$, with $S=F_{1} \cup F_{2}$, then

$$
\mathbb{P}\left(F_{1} \mid E\right)=\frac{\mathbb{P}\left(E \mid F_{1}\right) \mathbb{P}\left(F_{1}\right)}{\mathbb{P}\left(E \mid F_{1}\right) \mathbb{P}\left(F_{1}\right)+\mathbb{P}\left(E \mid F_{2}\right) \mathbb{P}\left(F_{2}\right)}
$$

and

$$
\mathbb{P}\left(F_{2} \mid E\right)=\frac{\mathbb{P}\left(E \mid F_{2}\right) \mathbb{P}\left(F_{2}\right)}{\mathbb{P}\left(E \mid F_{1}\right) \mathbb{P}\left(F_{1}\right)+\mathbb{P}\left(E \mid F_{2}\right) \mathbb{P}\left(F_{2}\right)}
$$

- Discrete random variable:

- PMF (Probability Mass Function): $p_{X}(x):=\mathbb{P}(X=x)$, (NOTE: some texts may use the notation for $f_{X}(x)=\mathbb{P}(X=x)$ to denote the PMF $)$
* Properties of a pmf $p(x)$:
* Note that we must have $0<p\left(x_{i}\right) \leq 1$ for $, i=1,2, \ldots$ and $p(x)=0$ for all other values of x can't attain.
* Also must have

$$
\sum_{i=1}^{\infty} p\left(x_{i}\right)=1
$$

- CDF: $F_{X}(x):=\mathbb{P}(X \leq x)$.

- Infinite Series: Geometric Series

$$
1+x+x^{2}+x^{3}+\cdots+=\frac{1}{1-x}
$$

then differentiating we have

$$
0+1+2 x+3 x^{2}+\cdots+=\frac{1}{(1-x)^{2}}
$$

- Continuous Random Variables:

Definition. A random variable X is said to have a continuous distribution if there exists a nonnegative function f_{X} (called the probability distribution function or PDF) such that

$$
\mathbb{P}(a \leq X \leq b)=\int_{a}^{b} f_{X}(x) d x
$$

for every a and b. [Sometimes we write that for nice sets $B \subset \mathbb{R}$ we have $\mathbb{P}(X \in B)=\int_{B} f_{X}(x) d x$.]

- All PDFs must satisfy:
(1) $f(x) \geq 0$ for all x
(2) $\int_{-\infty}^{\infty} f(x) d x=1$.
- CDF: $F_{X}(x):=\mathbb{P}(X \leq x)$
- Expected Values: If $g: \mathbb{R} \rightarrow \mathbb{R}$
- Discrete R.V.: List $X \in\left\{x_{1}, x_{2}, \ldots\right\}$

$$
* \mathbb{E}[g(X)]=\sum_{i=1}^{\infty} g\left(x_{i}\right) p_{X}\left(x_{i}\right)
$$

- Continuous R.V.:

$$
* \mathbb{E}[g(X)]=\int_{-\infty}^{\infty} g(x) f_{X}(x) d x
$$

- Fact: For continuous R.V we have the following useful relationship
- Since $F_{X}(x)=\mathbb{P}(X \leq x)=\int_{-\infty}^{x} f_{X}(y) d y$ then by the fundamental theorem of calculus we have

$$
F_{X}^{\prime}(x)=f_{X}(x)
$$

- How to find the PDF of $Y=g(X)$ where X is the PDF of X.
- Step1: First start by writing the cdf of Y and in terms of F_{X} :
- Step2: Then use the relation $f_{Y}(y)=F_{Y}^{\prime}(y)$ and take a derivative of the expression obtained in Step 1.

- Joint Distributions:

- Discrete: joint probability mass(discrete density) function

$$
p(x, y)=\mathbb{P}(X=x, Y=y)
$$

* Some texts may use $f(x, y)$ to denote the PMF.
- Continuous:For random variables X, Y we let $f(x, y)$ be the joint probability density function, if

$$
\mathbb{P}(a \leq X \leq b, c \leq Y \leq d)=\int_{a}^{b} \int_{c}^{d} f(x, y) d y d x
$$

* Or in general if $D \subset \mathbb{R}^{2}$ is a region in the plane then

$$
\mathbb{P}(X \in D)=\iint_{D} f(x, y) d y d x
$$

- We also have the multivariate cdf: $(\star \star)$ defined by

$$
F_{X, Y}(x, y)=\mathbb{P}(X \leq x, Y \leq y)
$$

- INDEPENDENCE:
- Discrete: We say discrete R.V. X, Y are independent if

$$
\mathbb{P}(X=x, Y=y)=\mathbb{P}(X=x) \mathbb{P}(Y=y)
$$

for every x, y in the range of X and Y.

* This is the same as saying that X, Y ar independent if the joint pmf splits into the marginal pmfs: $p_{X, Y}(x, y)=p_{X}(x) \cdot p_{Y}(y)$
- Continuous: We say continuous r.v. X, Y are independent if

$$
\mathbb{P}(X \in A, Y \in B)=\mathbb{P}(X \in A) \mathbb{P}(Y \in B)
$$

for any set A, B
Theorem 2. Continuous (discrete) r.v. X, Y are independent if and only if their joint pdf (pmf) can be expressed as

$$
\begin{aligned}
& f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y) . \quad(\text { Continuous Case }) \\
& p_{X, Y}(x, y)=p_{X}(x) p_{Y}(y) \quad(\text { Discrete Case })
\end{aligned}
$$

- Joint Expectations: Let $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ then

$$
\begin{aligned}
& \mathbb{E}[g(X, Y)]=\sum_{y} \sum_{x} g(x, y) p(x, y), \quad \text { (discrete) } \\
& \mathbb{E}[g(X, Y)]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x, y) f(x, y) d x d y, \text { Continuous }
\end{aligned}
$$

- Let $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$. Let X be a discrete random variable and Y be a continuous random variable. If X has pmf $p_{X}(x), Y$ has joint pdf $f_{Y}(y)$, and X, Y are independent then

$$
\mathbb{E}[g(X, Y)]=\sum_{i=1}^{\infty} \int_{-\infty}^{\infty} g\left(x_{i}, y\right) p_{X}(x) f_{Y}(y) d y
$$

- If X, Y are independent and $g, h: \mathbb{R} \rightarrow \mathbb{R}$ then

$$
\mathbb{E}[g(X) h(Y)]=\mathbb{E}[g(X)] \mathbb{E}[h(Y)]
$$

- The covariance between X and Y, is defined by

$$
\begin{aligned}
& \operatorname{Cov}(X, Y)=\mathbb{E}\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right] \\
& \operatorname{Cov}(X, Y)=\mathbb{E}[X Y]-\mathbb{E} X \mathbb{E} Y
\end{aligned}
$$

- For each random variable X, we can define its moment generating function $m_{X}(t)$ by

$$
\begin{aligned}
m_{X}(t) & =\mathbb{E}\left[e^{t X}\right] \\
& = \begin{cases}\sum_{x_{i}} e^{t x_{i}} p\left(x_{i}\right) & , \text { if } X \text { is discrete } \\
\int_{-\infty}^{\infty} e^{t x} f(x) d s & \text {,if } X \text { is continuous }\end{cases}
\end{aligned}
$$

- Fact 1: If $m_{X}(t)=m_{Y}(t)<\infty$ for all t in an interval, then X and Y have the same distribution.
- Fact 2: If X, Y are independent then $m_{X+Y}(t)=m_{X}(t) m_{Y}(t)$.
- Fact 3: If $m_{X}(t)$ is the MDF of X then the nth moment of X can be found by

$$
\mathbb{E}\left[X^{n}\right]=m_{X}^{(n)}(0)
$$

- How we use CLT (CENTRAL LIMIT THEOREM): That is, for any random variable X with $\mathbb{E} X=\mu$ then standard deviation σ then

$$
\mathbb{P}\left(\frac{X_{1}+\cdots+X_{n}-n \mu}{\sigma \sqrt{n}} \leq b\right) \approx \mathbb{P}(Z \leq b)=\Phi(b)
$$

